Molecular Reorientation in AlBr₃·NH₃, as Studied by the ⁸¹Br Nuclear Quadrupole Resonance

Hideta Ishihara,* Koji Yamada,† Tsutomu Okuda,† and Alarich Weiss††

Faculty of Education, Saga University, Honjo-machi 1, Saga 840

†Department of Chemistry, Faculty of Science, Hiroshima University, Kagamiyama, Higashihiroshima 724 ††Institut für Physikalische Chemie, TH Darmstadt, Petersenstr. 20, D-64287 Darmstadt, Germany

(Received November 24, 1994)

The temperature dependence of the ⁸¹Br nuclear quadrupole resonance (NQR) frequencies and spinlattice relaxation times (T_{1Q}) of ⁸¹Br NQR have been measured in aluminum tribromide–ammonia (1/1), AlBr₃·NH₃, crystals. The ⁸¹Br NQR spectrum consists of 6 lines, which are ascribed to two AlBr₃ groups. This has been confirmed by the observation of ²⁷Al NQR using the ⁸¹Br \leftrightarrow ²⁷Al spin echo double resonance method. A ⁸¹Br T_{1Q} measurement revealed that the activation energies for the reorientation of the AlBr₃ groups or the molecular tumbling of AlBr₃·NH₃ are 61.1 and 81.6 kJ mol⁻¹. The difference in the activation energies was reflected in the temperatures of the fade-out of the ⁸¹Br NQR lines at T_f = 320 and 350 K, respectively.

The existence of AlBr₃·NH₃ and AlCl₃·NH₃ in the vapor phase is known, and has an ideal D_{3h} symmetry.^{1,2)} The molecular structure of AlCl₃·NH₃ in the vapor phase is also maintained in the solid state.³⁾ By adding ammonia to AlCl₃·NH₃, ionic compounds, e.g., AlCl₃·2NH₃ ([AlCl₂(NH₃)₄]+·[AlCl₄]⁻) and AlCl₃·3NH₃ ([AlCl₂(NH₃)₄]+·[AlCl₄(NH₃)₂]⁻), are formed.^{4,5)}

We investigated the motion of the AlBr₃ group in neutral AlBr₃·L (L=ligand) molecular complexes;⁶⁾ two of us have studied the motion of AlBr₄ anions in ionic compounds, AlBr₃·2CH₃CN and AlBr₃·1.5CH₃CN, in which solid compounds have to be formulated as {[AlBr(CH₃CN)₅]²⁺·2[AlBr₄]⁻·CH₃CN} and {[Al(CH₃CN)₆]³⁺·3[AlBr₄]⁻}, respectively.⁷⁾ We have started to observe the NQR of ³⁵Cl and ⁸¹Br in order to define the characteristics of the motions in aluminum trihalide–ammonia (1/n) crystals.

Experimental

The starting materials used to prepare AlBr₃·NH₃ are AlBr₃ and AlBr₃·6NH₃. AlBr₃·6NH₃ was prepared by streaming NH₃ gas over AlBr₃ at room temperature. AlBr₃·NH₃ was prepared by heating a mixture of a stoichiometric amount of AlBr₃·6NH₃ and AlBr₃ in a sealed tube; the product was purified by using the Bridgeman method. AlBr₃·NH₃ melts at 398 K. Found: Br, 83.62%. Calcd: Br, 84.49%.

 81 Br NQR was observed on an oscilloscope by using a superregenerative-type oscillator. The spin-lattice relaxation times $(T_{1Q}(^{81}$ Br)) were measured using a Matec pulsed spectrometer (Model 5100+525 and a receiver Model 625). $T_{1Q}(^{81}$ Br) was determined by observing the free induction

decay (FID) following a 90°- τ -90° pulse sequence, or the echo signals after a 180°- τ -90°- τ' -180° pulse sequence. The NQR frequencies were determined within an accuracy of ± 10 kHz. The ²⁷Al NQR was observed by the ⁸¹Br \leftrightarrow ²⁷Al spin echo double resonance (SEDOR) method.^{8,9)} The ¹H NMR spectra were observed at 60 MHz using a wide-line NMR spectrometer (JEOL-JNM-FW60).

Results and Discussion

Six ⁸¹Br NQR lines were observed for AlBr₃·NH₃ at room temperature and at 77 K. This NQR result agrees with the crystal structure determined at room temperature by Jacobs and co-workers. ¹⁰⁾ The compound crystallizes at room temperature in the orthorhombic space group Pbca and with Z=16 formula units per unit cell. Consequently, there are two molecules of AlBr₃·NH₃ as the asymmetric unit (6 independent Br atoms, 2 independent Al atoms, and 2 independent N atoms). This is also supported by the observation of SEDOR (shown below). The temperature dependence of the ⁸¹Br NQR frequencies ($77 \le T/K \le 350$) in AlBr₃·NH₃ is shown in Fig. 1. It is common practice to describe the temperature dependence of the NQR frequencies by the following power series:

$$\nu_{\mathbf{i}} = \sum a_j \cdot T^j, \qquad -1 \le j \le 2. \tag{1}$$

The ⁸¹Br NQR frequencies at 77 and 297 K are listed in Table 1, and the coefficients of the polynomial are given in Table 2. The ν_2 , ν_3 , and ν_6 lines show abnormal temperature dependences of the NQR frequencies ($\nu(T)$). They have a concave curvature at around 150 K in contrast to the results of classical Bayer theory for $\nu(T)$, ¹¹⁾

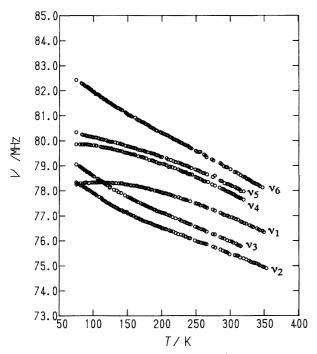


Fig. 1. Temperature dependence of the 81 Br NQR sextet. The running numbers ν_{1} —6 increase with increasing frequencies measured at 77 K.

Table 1. $^{81} \rm Br \, NQR$ Frequencies of AlBr₃·NH₃ at 77 and 297 K

${ u_i}^{ m a)}$	$ u/{ m MHz} $ $T/{ m K=77}$	$ u/\mathrm{MHz} $ $T/\mathrm{K}{=}297$
ν_1	78.250	76.030
$ u_2$	78.332	75.539
$ u_3$	79.052	76.012
$ u_4$	79.909	77.974
$ u_5$	80.299	78.291
$ u_6$	82.437	78.939

a) The numbering i of the frequencies is increasing with increasing frequency at 77 K.

Table 2. Coefficients a_j of the Power Series $\nu_i = f(T) = \sum a_j \cdot T^j$

ν_i	$Z^{\mathrm{a})}$	$\sigma^{ m b)}$	a_0	a_{-1}	$a_1 \cdot 10^3$	$a_2 \cdot 10^6$
		kHz	$\overline{\mathrm{MHz}}$	MHzK	$\overline{MHzK^{-1}}$	$\overline{MHzK^{-2}}$
$\overline{}_{ u_1}$	94	11.52	79.752	-86.850	-3.993	-14.263
$ u_2$	105	24.16	77.536	110.767	-7.075	-3.197
ν_3	91	18.52	78.634	94.992	-9.690	-0.511
$ u_4$	90	16.34	80.097	-0.208	-0.472	-22.500
$ u_5$	84	14.94	80.594	0.047	-2.634	-17.267
$ u_6$	124	18.40	82.082	93.358	-9.469	-7.493

a) Z is the number of the experimental points. b) σ is the standard deviation.

which predicts a continuous decrease (and increasing slope) of the NQR frequencies along with increasing temperature in molecular crystals. One possible reason for this abnormal temperature dependence is the effect of a reorientation of the NH₃ groups and/or the AlBr₃ groups on the electric field gradients (EFG's) at the Br atoms, as seen for some ammonium compounds. $^{12-14}$ In this case, however, the N···Br distances are in the 355—393 pm range and are slightly longer than the normal N–H···Br hydrogen bond distance (337 pm). 15 Another possible reason for the complex temperature dependence is the anisotropic expansion of the unit cell upon heating, as given by the explanation of the abnormal temperature dependences of the NQR frequencies in (CH₃NH₃)₂CdBr₄. 16,17)

Three of the ⁸¹Br NQR lines disappeared at around 320 K; the other three lines disappeared at around 350 K. This disappearance is considered to be due to a reorientation of the AlBr₃ groups or the molecular tumbling of the AlBr₃·NH₃ molecules (discussed below). Two fade-out temperatures also indicate that two crystallographically independent AlBr₃ groups exist in the crystal. From $\nu_i = f(T)$ (see Fig. 1) we are able to assign ν_3 , ν_4 , and ν_5 to one of the AlBr₃ groups, then ν_1 , ν_2 , and ν_6 to the other. We could also confirm the existence of two AlBr₃ groups by ⁸¹Br↔²⁷Al SEDOR experiments. The results are listed in Table 3; they show that Br atoms assigned to ν_1 , ν_2 , and ν_6 belong to the Al(a) atom, and that the Br atoms assigned to ν_3 , ν_4 , and ν_5 are bonded to Al(b). The quadrupole coupling constants, $e^2 Qq(^{27}\text{Al})/h$, and the asymmetry parameters, $\eta(^{27}\text{Al})$, deduced from frequency measurements, are also listed in Table 3. The $e^2 Qq(^{27}Al)/h$ value of Al(a) is slightly larger than that of Al(b). These values are, however, considerably smaller than those found for AlBr₃ complexes containing O-Al bonds.⁶⁾ The $\eta(^{27}\text{Al})$ of Al(a) is considerably larger than that of Al(b), indicating that the tetrahedron of (H₃N)Al(a)Br₃ is more

Table 3. a) ²⁷Al NQR Frequencies of AlBr₃·NH₃ at 77 K Measured by SEDOR

b) Averaged ²⁷Al NQR Frequencies, Nuclear Quadrupole Coupling Constant $e^2 Qq(^{27}\text{Al})/h$ and Asymmetry Parameter $\eta(^{27}\text{Al})$

a)			
$ u_i(^{81}{ m Br}) $	$ u_{1/2}/\mathrm{kHz^{a)}}$	$ u_{3/2}/\mathrm{kHz^{a)}}$	Assignment
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	256.1	419.6	Al(a)
$ u_2$	256.1	419.7	Al(a)
$ u_6$			Al(a)
$ u_3$	177.0	345.0	Al(b)
$ u_4$	175.8	354.0	Al(b)
$ u_5$	177.7	352.9	Al(b)

b)				
Nucleus	$\nu_{1/2}/\mathrm{kHz}$	$\nu_{3/2}/\mathrm{kHz}$	$e^2Qq(^{27}{\rm Al})/h/{\rm MHz}$	$\eta(^{27}\mathrm{Al})$
Al(a)	256.1	419.6	1.447	0.425
Al(b)	176.8	350.8	1.176	0.036

a) $\nu_{1/2}$ and $\nu_{3/2}$ are the transitions $m{=}1/2{\leftrightarrow}m{=}3/2$ and $m{=}3/2{\leftrightarrow}m{=}5/2$, respectively. The SEDOR $\nu_6(^{81}{\rm Br}){\leftrightarrow}^{27}{\rm Al}$ was not followed up.

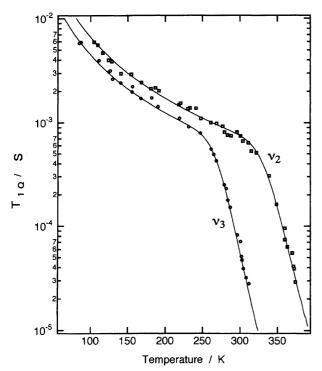


Fig. 2. Spin lattice relaxation time $T_{1Q}(^{81}\mathrm{Br})$ for ν_2 and ν_3 vs. temperature.

distorted than the tetrahedron (H₃N)Al(b)Br₃.

Figure 2 shows the temperature dependence of $T_{1\mathrm{Q}}(^{81}\mathrm{Br})$ for ν_2 and ν_3 . ν_1 and ν_6 show almost the same temperature dependence of $T_{1\mathrm{Q}}$ as ν_2 , and ν_5 shows the same behavior as ν_3 . We used the data for the ν_2 and ν_3 lines to analyze $T_{1\mathrm{Q}}$. The ν_2 and ν_3 lines show a sharp decrease in $T_{1\mathrm{Q}}$ above 320 and 260 K, respectively. The $T_{1\mathrm{Q}}$ values for ν_2 and ν_3 can be reproduced by

$$1/T_{1Q} = aT^{m} + b \exp(-E_{a}/RT),$$

$$104 \le T/K \le 373 \text{ for } \nu_{2}(^{81}Br),$$

$$84 \le T/K \le 315 \text{ for } \nu_{3}(^{81}Br).$$
(2)

Fitting Eq. 2 to the experimental T_{1Q} values for ν_2 and ν_3 gives the a, m, b, and E_a parameters listed in Table 4. The T_{1Q} values, calculated from the obtained parameters, are indicated in Fig. 2 by solid lines. The value of m is 2 for a nuclear spin of 3/2 when the quadrupolar spin-lattice relaxation is governed by librational motions which cause an oscillation of the principal EFG axes of the resonant nucleus, $^{18,19)}$ compared with the experimental values, 1.85 and 1.95, respectively. The difference between the two activation en-

Table 4. Parameters Obtained by Best-Fit of Eq. 2 to the Experimental $T_{1Q}(^{81}\text{Br})$ Values

Lines	$a/(\mathrm{s}^{-1}\mathrm{K}^m)$	m	b/s^{-1}	$E_{\rm a}/({ m kJmol^{-1}})$
ν_2	0.191×10^{-1}	1.95	0.746×10^{16}	81.6
$ u_3$	0.447×10^{-1}	1.85	0.714×10^{15}	61.1

ergies, 61.1 and 81.6 kJ mol $^{-1}$, is reflected in the difference between the temperatures ($T_{\rm f}$'s) for the fade-out of the NQR lines due to two AlBr $_{3}$ groups. The correlation between the $T_{\rm f}$'s and the activation energies of the reorientation of the AlBr $_{3}$ groups is seen from the data given in Table 5; however, the activation energies for the reorientation of the AlBr $_{3}$ groups in AlBr $_{3}$ ·NH $_{3}$ are considerably larger than that observed for the other compounds listed; they are comparable to 69.5 and 70.7 kJ mol $^{-1}$ for the isotropic reorientation of AlBr $_{4}$ ions in AlBr $_{3}$ ·2CH $_{3}$ CN. 7

The activation energies obtained here are also explained by the molecular tumbling of the AlBr₃·NH₃ molecules for the following reason. The ¹H NMR spectra were observed at temperatures between 105 K and the melting point. The second moment $(M_2(^1H))$ of the ¹H NMR spectra was nearly constant $(5 \times 10^{-8} \text{ T}^2)$ in the $105 \le T/K \le 310$ range, and the ¹H NMR spectra were characteristic for a rapidly rotating NH₃ group. At temperatures above 310 K the second moment decreased down to $2.5 \times 10^{-8}~\mathrm{T}^2$ at 380 K and $0.7 \times 10^{-8}~\mathrm{T}^2$ at 5 degree below the melting point. Based on electron diffraction¹⁾ the N-H distance in AlBr₃·NH₃ is 1.057 Å, and the H-N-H angle is 114.5°. We can evaluate only the intramolecular contribution to $M_2(^1\mathrm{H})$ of the $^{1}\mathrm{H\,NMR}$ spectra. It is $23.5{ imes}10^{-8}$ T 2 for the rigid NH $_{3}$ group and 5.8×10^{-8} T² for its C₃-rotation. It is apparent that the NH₃ group executes a rotation about its C₃-axis, even at 105 K. At temperatures above 310 K, a narrow ${}^{1}H$ NMR line of 0.3×10^{-4} T appeared, and then gradually increased in intensity up to the melting point. A preliminary measurement of $T_1(^1H)$ at 60 MHz showed that $T_1(^1H)$ increases from 3 s at 77 K to 11.8 s at 220 K, almost linearly with increasing temperature; it then decreases down to 10.2 s at 300 K. This temperature behavior of $T_1(^1H)$ can be explained as follows: C₃-rotation of the NH₃ group is executed and the $T_1(^1H)$ minimum due to this rotation might appear below 77 K. According to the $T_{1Q}(^{81}Br)$ data, some additional motion starts at around 260 K. If it is supposed that this motion is molecular tumbling of the AlBr₃·NH₃ molecules, $T_1(^1H)$ should show a decrease due to an averaging of the dipolar interaction between

Table 5. Activation Energies, E_a for C_3 -Reorientation of AlBr₃ Groups in Several AlBr₃ Complexes

Compounds	$E_{\rm a}/({ m kJmol^{-1}})$	$T_{ m f}/{ m K}^{ m a)}$	Ref.
$AlBr_3 \cdot (C_2H_5)_2O$	11.8	150	6)
$NaAl_2Br_7$	30.2	250	20)
$\mathrm{AlBr_3}$.	34.1	300	6)
$[4-(C_2H_5)C_6H_4(NO_2)]$			
$NaAl_2Br_7$	43.5	320	20)
$AlBr_3 \cdot C_6 H_5 COBr$	56.6	>330	6)
${ m AlBr_3\cdot NH_3}$	61.1	320	This work
	81.6	350	This work

a) $T_{\rm f}$ is the observed fade-out temperature.

H atoms. This motion also would cause a decrease in the ¹H NMR line width above this temperature.

Conclusion

From the executed experiments (81 Br NQR, 27 Al NQR by 81 Br \leftrightarrow^{27} Al SEDOR, and 1 H NMR) we found that the two crystallographically inequivalent units of AlBr $_3$ ·NH $_3$ give different dynamical behaviors. We can also assign three of the 81 Br NQR lines (ν_1 , ν_2 , and ν_6) to one of the Al atoms, and the other three (ν_3 , ν_4 , and ν_5) to the second one, respectively. However, we cannot allocate each 81 Br NQR line to two crystallographic groups, Br $^{(1)}$ Br $^{(2)}$ Br $^{(3)}$ Al $^{(1)}$ or Br $^{(4)}$ Br $^{(5)}$ Br $^{(6)}$ Al $^{(2)}$. $^{(0)}$ This is also not possible on the basis of the distance-frequency relation, $\nu=a/d^3$, because of small differences in d(Al–Br). A solution of the problem would be a single-crystal Zeeman NQR of 81 Br in AlBr $_3$ ·NH $_3$.

The author (H.I.) wishes to express his thanks to Alexander von Humboldt-Stiftung for a fellowship.

References

- 1) M. Hargittai, J. Tamás, N. Bihari, and I. Hargittai, Acta Chim. Acad. Sci. Hung., 99, 127 (1979).
- 2) M. Hargittai, I. Hargittai, V. P. Spiridonov, and A. A. Ivanov, J. Mol. Struct., 39, 225 (1977).
- 3) K. N. Semenenko, E. B. Lobkovskii, V. B. Polyakowa, I. I. Korobov, and O. V. Kravchenko, *Koord. Khim.*, 4, 1649 (1978).

- 4) H. Jacobs and B. Nöcker, Z. Anorg. Allg. Chem., **614**, 25 (1992).
- 5) H. Jacobs and B. Nöcker, Z. Anorg. Allg. Chem., **619**, 73 (1993).
- 6) H. Ishihara, S. Nakashima, K. Yamada, T. Okuda, and Al. Weiss, Z. Naturforsch. A, 45A, 237 (1990).
- 7) K. Yamada, T. Okuda, and H. Negita, Z. Naturforsch. A, 41A, 230 (1986).
- 8) N. Weiden and Al. Weiss, J. Magn. Reson., 20, 334 (1975).
- 9) K. Yamada and T. Okuda, J. Phys. Chem., 89, 4269 (1985).
- 10) F. O. Schröder, Dissertation, Universität Dortmund; H. Jacobs and F. O. Schröder (to be published).
- 11) H. Bayer, Z. Phys., 130, 227 (1951).
- 12) K. Negita, N. Nakamura, and H. Chihara, *Chem. Phys. Lett.*, **63**, 187 (1979).
- 13) H. Chihara, K. Negita, Y. Yoshioka, and N. Nakamura, J. Mol. Struct., 58, 155 (1980).
- 14) H. Chihara and N. Nakamura, Adv. NQR, 4, 1 (1980).
- 15) G. C. Pimentel and A. L. Mclellan, "The Hydrogen Bond," W. H. Freeman and Company, San Francisco (1960).
- 16) H. Nakayama, T. Eguchi, N. Nakamura, J. Chem. Soc., Faraday Trans., 88, 3067 (1992).
- 17) R. J. C. Brown, Z. Naturforsch. A, 45A, 449 (1990).
- 18) D. E. Woessner and H. S. Gutowsky, *J. Chem. Phys.*, **39**, 440 (1963).
- 19) L. V. Jones, M. Sabir, and J. A. S. Smith, *J.*-*Phys.* C, 11, 4077 (1978).
- 20) K. Yamada, T. Okuda, S. Ichiba, *Bull. Chem. Soc. Jpn.*, **60**, 4197 (1987).